Multilinear Dynamical Systems for Tensor Time Series
نویسندگان
چکیده
Data in the sciences frequently occur as sequences of multidimensional arrays called tensors. How can hidden, evolving trends in such data be extracted while preserving the tensor structure? The model that is traditionally used is the linear dynamical system (LDS) with Gaussian noise, which treats the latent state and observation at each time slice as a vector. We present the multilinear dynamical system (MLDS) for modeling tensor time series and an expectation–maximization (EM) algorithm to estimate the parameters. The MLDS models each tensor observation in the time series as the multilinear projection of the corresponding member of a sequence of latent tensors. The latent tensors are again evolving with respect to a multilinear projection. Compared to the LDS with an equal number of parameters, the MLDS achieves higher prediction accuracy and marginal likelihood for both artificial and real datasets.
منابع مشابه
Learning Linear Dynamical Systems with High-Order Tensor Data for Skeleton based Action Recognition
In recent years, there has been renewed interest in developing methods for skeleton-based human action recognition. A skeleton sequence can be naturally represented as a high-order tensor time series. In this paper, we model and analyze tensor time series with Linear Dynamical System (LDS) which is the most common for encoding spatio-temporal time-series data in various disciplines dut to its r...
متن کاملA Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis
Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...
متن کاملSolving Multilinear Systems via Tensor Inversion
Higher order tensor inversion is possible for even order. This is due to the fact that a tensor group endowed with the contracted product is isomorphic to the general linear group of degree n. With these isomorphic group structures, we derive a tensor SVD which we have shown to be equivalent to well-known canonical polyadic decomposition and multilinear SVD provided that some constraints are sa...
متن کاملA Report on Multilinear PCA Plus Multilinear LDA to Deal with Tensorial Data: Visual Classification as An Example
In practical applications, we often have to deal with high order data, such as a grayscale image and a video sequence are intrinsically 2nd-order tensor and 3rd-order tensor, respectively. For doing clustering or classification of these high order data, it is a conventional way to vectorize these data before hand, as PCA or FDA does, which often induce the curse of dimensionality problem. For t...
متن کاملSynchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control
In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...
متن کامل